Natural Image Bases to Represent Neuroimaging Data
نویسندگان
چکیده
Visual inspection of neuroimagery is susceptible to human eye limitations. Computerized methods have been shown to be equally or more e↵ective than human clinicians in diagnosing dementia from neuroimages. Nevertheless, much of the work involves the use of domain expertise to extract hand–crafted features. The key technique in this paper is the use of cross–domain features to represent MRI data. We used a sparse autoencoder to learn a set of bases from natural images and then applied convolution to extract features from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Using this new representation, we classify MRI instances into three categories: Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI) and Healthy Control (HC). Our approach, in spite of being very simple, achieved high classification performance, which is competitive with or better than other approaches.
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملNeuroimaging in Iran: A Review
ABSTRACTNeuroimaging allows noninvasive evaluation of the anatomy, physiology, and function of the brain. It is widely used for diagnosis, treatment planning, and treatment evaluation of neurological disorders as well as understanding functions of the brain in health and disease. Neuroimaging modalities include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emis...
متن کاملWavelet variance components in image space for spatiotemporal neuroimaging data.
Neuroimaging studies place great emphasis on not only the estimation but also the standard error estimates of underlying parameters derived from a temporal model. This allows inferences to be made about the signal estimates and resulting conclusions to be drawn about the underlying data. It can often be advantageous to interrogate temporal models after spatial transformation of the data into th...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملImplementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey
Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013